20+y^2+y^2=40

Simple and best practice solution for 20+y^2+y^2=40 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 20+y^2+y^2=40 equation:



20+y^2+y^2=40
We move all terms to the left:
20+y^2+y^2-(40)=0
We add all the numbers together, and all the variables
2y^2-20=0
a = 2; b = 0; c = -20;
Δ = b2-4ac
Δ = 02-4·2·(-20)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{10}}{2*2}=\frac{0-4\sqrt{10}}{4} =-\frac{4\sqrt{10}}{4} =-\sqrt{10} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{10}}{2*2}=\frac{0+4\sqrt{10}}{4} =\frac{4\sqrt{10}}{4} =\sqrt{10} $

See similar equations:

| -4x+(-3-2)=59 | | X+y÷3=5 | | x+2/9+2x-1/4=1 | | 2/3=(-8•y) | | -111+2x=93+14x | | 2x-2+18=-2x-8-4x | | 6x+29=115 | | .25+55=35x+45 | | 6x+14x5=5(4x+1) | | x+5-5x=-15 | | 16=6+x2 | | -44-10x=-7x(x+8) | | (20t^2+t)^2-22(20t^2+t)+21=0 | | 6(x÷3)=30 | | 1/2(2n-8)=26 | | 6-2m+3-4m=51 | | -(-8)p+(-6p)=-112 | | -35 = f5– 43 | | 11x-14=4x+14 | | 10x-11/13-9x=14/13+18/13 | | 11x+0.67(9x−12)=19x−2(x−4) | | -2.5x-9=16 | | 11x+23(9x−12)=19x−2(x−4) | | -3=j+65 | | y÷3=30 | | (7x−6)=(5x+2) | | 4(-8x+3)=32x-36 | | (20t^2+t)^2-22(20t^2+t)=21 | | 3x-103=10x+49 | | 5x+9=50 | | j-4=29 | | 5(-8x+3)=32x-36 |

Equations solver categories